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Introduction

Introduction

In this module, we will quickly review key statistical concepts and their algebraic
properties.
These concepts are taken for granted (more or less) in all graduate level discussions of
regression analysis.
There are extensive review chapters available to help you gain/recover familiarity with the
concepts.
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The Mean and the Expected Value

The Mean

The mean of a list of numbers is the arithmetic average of the list, i.e., the sum divided
by n.

X • =
1

n

n∑
i=1

Xi
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The Mean and the Expected Value

The Expected Value

The expected value of a random variable is the long run arithmetic average of the values
taken on by the random variable.
The expected value of a random variable X is denoted E (X ), and is also often simply
referred to as the mean of the random variable X .
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The Mean and the Expected Value

Algebraic Properties of Linear Transformation

A listwise operation is a mathematical transformation applied uniformly to every number
in a list.
A key fact discussed extensively in Psychology 310 is that addition, subtraction,
multiplication, and division of all the values in a list (or, alternatively, all the values taken
on by a random variable) comes “straight through” in the mean.
A linear transformation of the form Y = aX + b includes all 4 basic listwise operations as
special cases.
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The Mean and the Expected Value

Algebraic Properties of Linear Transformation
Theorem (Mean of a Linear Transform)

Suppose Y and X are random variables, and Y = aX + b for constants a and b. Then

E (Y ) = aE (X ) + b

If Y and X are lists of numbers and Yi = aXi + b, then a similar rule holds, i.e.,

Y • = aX • + b
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The Mean and the Expected Value

Algebraic Properties of Linear Transformation
Example (Listwise Transformation and the Sample Mean)

Suppose you have a list of numbers X with a mean of 5.

If you multiply all the X values by 2 and then add 3 to all those values, you have transformed
X into a new variable Y by the listwise operation Y = 2X + 3.

In that case, the means of Y and X will be related by the same formula, i.e.,
Y • = 2X • + 3 = 2(5) + 3 = 13.

James H. Steiger (Vanderbilt University) Review of Basic Statistical Concepts 8 / 72



The Mean and the Expected Value

Algebraic Properties of Linear Transformation
Example (Listwise Transformation and the Population Mean)

Suppose you have a random variable X with an expected value of E (X ) = 10. Define the
random variable Y = 2X − 4. Then E (Y ) = 2E (X )− 4 = 20− 4 = 16.
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Listwise Operations and Linear Transformations in R

Elementary Listwise Operations

Getting a short list of data into R is straightforward with an assignment statement.
Here we create an X list with the integer values 1 through 5.

> X <- c(1,2,3,4,5)
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Listwise Operations and Linear Transformations in R

Elementary Listwise Operations

Creating a new variable that is a linear transformation of the old one is easy:

> Y = 2*X + 5

> Y

[1] 7 9 11 13 15

And, the means of X and Y obey the linear transformation rule.

> mean(X)

[1] 3

> 2 * mean(X) + 5

[1] 11

> mean(Y)

[1] 11
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Deviation Scores, Variance, and Standard Deviation

Deviation Scores, Variance, and Standard Deviation

If we re-express a list of numbers in terms of where they are relative to their mean, we
have created deviation scores.
Deviation scores are calculated as

dxi = Xi − X •

This is done easily in R as

> dx = X - mean(X)

> X

[1] 1 2 3 4 5

> dx

[1] -2 -1 0 1 2
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Deviation Scores, Variance, and Standard Deviation

Deviation Scores, Variance, and Standard Deviation

If we want to measure how spread out a list of numbers is, we can look at the size of
deviation scores.
Bigger spread means bigger deviations around the mean.
One might be tempted to use the average deviation score as a measure of spread, or
variability.
But that won’t work.
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Deviation Scores, Variance, and Standard Deviation

Deviation Scores, Variance, and Standard Deviation

Why Not?
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Deviation Scores, Variance, and Standard Deviation

Deviation Scores, Variance, and Standard Deviation

A better idea is the average squared deviation.
An even better idea, if you are estimating the average squared deviation in a large
population from the information in the sample, is to use the sample variance

S2
X =

1

n − 1

n∑
i=1

(Xi − X •)2

The sample standard deviation is simply the square root of the sample variance, i.e.,

SX =
√
S2
X
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Deviation Scores, Variance, and Standard Deviation

Deviation Scores, Variance, and Standard Deviation

Computing the variance or standard deviation in R is very easy.

> var(X)

[1] 2.5

> sd(X)

[1] 1.581139
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Deviation Scores, Variance, and Standard Deviation

Linear Transformation Rules for Variances and Standard Deviations

Multiplication or division comes straight through in the standard deviation if the multiplier
is positive — otherwise the absolute value of the multiplier comes straight through.
This makes sense if you recall that there is no such thing as a negative variance or
standard deviation!
Additive constants have no effect on deviation scores, and so have no effect on the
standard deviation or variance.
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Deviation Scores, Variance, and Standard Deviation

Linear Transformation Rules for Variances and Standard Deviations

INVESTIGATE! IN R!!
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Deviation Scores, Variance, and Standard Deviation

Linear Transformation Rules for Variances and Standard Deviations

> X

[1] 1 2 3 4 5

> X - mean(X)

[1] -2 -1 0 1 2

> sd(X)

[1] 1.581139

> Y <- X + 5

> Y - mean(Y)

[1] -2 -1 0 1 2

> sd(Y)

[1] 1.581139
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Deviation Scores, Variance, and Standard Deviation

Linear Transformation Rules for Variances and Standard Deviations

> Y <- 2*X + 5

> Y - mean(Y)

[1] -4 -2 0 2 4

> sd(Y)

[1] 3.162278

> var(Y)

[1] 10
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Deviation Scores, Variance, and Standard Deviation

Linear Transformation Rules for Variances and Standard Deviations

Unless stated otherwise, we will generally assume that linear transformations are
“positive,” i.e., the multiplier is a positive number.
With that assumption, we can say the following:

Theorem

Let Y and X represent lists of numbers, and a and b be constants. Then if

Y = aX + b and a > 0

SY = aSX

and
S2
Y = a2S2

X

In analogous fashion, if Y and X are random variables, then

σY = aσX

and
σ2
Y = a2σ2

X
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Z -Scores

Z -Scores

In Psychology 310, we go into quite a bit of detail explaining how any list of numbers can
be thought of as having

1 Shape
2 Metric, comprised of a mean and a standard deviation.
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Z -Scores

Z -Scores

Shape, the pattern of relative interval sizes moving from left to right on the number line,
is invariant under positive linear transformation.
It can be thought of as the information in a list that “transcends scaling.”
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Z -Scores

Z -Scores

Metric, the mean and standard deviation of the numbers, can be thought of as the
information in a list that “reflects scaling.”
In a lot of situations, “metric can be thought of as arbitrary.”
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Z -Scores

Z -Scores

Consider the Z score transformation, which transforms a list of X values as

Zi =
Xi − X •

Sx

If we do this to a list of numbers, what will their mean and standard deviation (i.e., their
metric) become?
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Z -Scores

Z -Scores

We might begin by investigating empirically, using R.
Create a “haphazard” list of numbers.
Not too small, not too large, call it X
Now, convert to Z scores and see what happens.

> X <- c(16.2,33,13.9,12.8,3.3)

> X

[1] 16.2 33.0 13.9 12.8 3.3

> Z <- (X - mean(X))/sd(X)

> mean(Z)

[1] 2.502339e-17

> sd(Z)

[1] 1
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Z -Scores

Z -Scores

Now YOU try it.
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Z -Scores

Z -Scores

It seems like, no matter what list of numbers we generate, the Z -transform converts them
so that they have a mean of 0 (ignoring round-off error) and a standard deviation of 1.
Now that we suspect we know the answer, we can perhaps be more confident as we set
out to prove that, in fact, this suspicion is correct.
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Z -Scores

Z -Scores

Let’s “track” what happens to a list of numbers X as we apply the Z -score
transformation.

Z =
X − X •

SX
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Z -Scores

Z -Scores

We start in the numerator with the original
scores in X . What happens to the scores when
we subtract X •?

Z =
X − X •

SX

We recall from our linear transformation rules that subtracting the constant X • has no effect
on the standard deviation of the scores, so the scores will still have a standard deviation of SX .
However, subtracting X • reduces the mean of the scores by X •, so the mean has been
changed to 0.

So at this stage of the transformation, we have scores with a mean of zero and a standard
deviation of SX .
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Z -Scores

Z -Scores

Moving on to the next stage of the
transformation, we realize that dividing by SX
divides the standard deviation by SX , and so
the standard deviation becomes SX/SX = 1.

The mean is 0/SX = 0, and remains
unchanged.

We now see that what R demonstrated to us
numerically is mathematically inevitable.

Z =
X − X •

SX
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Z -Scores

Z -Scores

In an important sense, Z -scoring removes the metric from a list of numbers by rendering
any list with the same, simple metric.
We say that scores are in Z -score form if they have a mean of 0 and a standard deviation
of 1.
Once scores are in Z -score form, we can convert them into any other desired metric by
just mulitplying by the desired standard deviation, then adding the desired mean.
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Covariance and Correlation

Bivariate Distributions and Covariance

Here’s a question that you’ve thought of informally, but probably have never been tempted
to assess quantitatively: “What is the relationship between shoe size and height?”
We’ll examine the question with a data set from an article by Constance McLaren in the
2012 Journal of Statistics Education.
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Covariance and Correlation

Bivariate Distributions and Covariance

The data file is available in several places on the course website. You may download the
file by right-clicking on it (it is next to the lecture slides).
These data were gathered from a group of volunteer students in a business statistics
course.
If you place it in your working directory, you can then load it with the command

> all.heights <- read.csv("shoesize.csv")

Alternatively, you can download directly from a web repository with the command

> all.heights <- read.csv(

+ "http://www.statpower.net/R2101/shoesize.csv")
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Covariance and Correlation

Bivariate Distributions and Scatterplots

We can isolate the male data from all the data with the following command:

> rm(X,Y) # remove old X,Y variables

> male.data <- all.heights[all.heights$Gender=="M",] #Select males

> attach(male.data)#Make Variables Available
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Covariance and Correlation

Bivariate Distributions and Scatterplots

Let’s draw a scatterplot:

> # Draw scatterplot

> plot(Size,Height,xlab="Shoe Size",ylab="Height in Inches")
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Covariance and Correlation

Bivariate Distributions and Scatterplots

This scatterplot shows a clear connection between shoe size and height.
Traditionally, the variable to be predicted (the dependent variable) is plotted on the
vertical axis, while the variable to be predicted from (the independent variable) is plotted
on the horizontal axis.
Note that, because height is measured only to the nearest inch, and shoe size to the
nearest half-size, a number of points overlap. The scaterplot indicates this by making
some points darker than others.
But how can we characterize this relationship accurately?
We notice that shoe size and height vary together.
A statistician might say they “covary.”
This notion is operationalized in a statistic called covariance.
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Covariance and Correlation

Bivariate Distributions and Scatterplots

Let’s compute the average height and shoe size, and then draw lines of demarcation on
the scatterplot.

> mean(Height)

[1] 71.10552

> mean(Size)

[1] 11.28054
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Covariance and Correlation

Bivariate Distributions and Scatterplots

> plot(Size,Height,xlab="Shoe Size",ylab="Height in Inches")

> abline(v=mean(Size),col="red")

> abline(h=mean(Height),col="blue")

> text(13,80,"High-High")

> text(8,70,"Low-Low")
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Covariance and Correlation

Bivariate Distributions and Scatterplots

The upper right (“High-High”) quadrant of the plot represents men whose heights and
shoe sizes were both above average.
The lower left (”Low-Low”) quadrant of the plot represents men whose heights and shoe
sizes were both below average.
Notice that there are far more data points in these two quadrants than in the other two:
This is because, when there is a direct (positive) relationship between two variables, the
scores tend to be on the same sides of their respective means.
On the other hand, when there is an inverse (negative) relationship between two variables,
the scores tend to be on the opposite sides of their respective means.
This fact is behind the statistic we call covariance.
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Covariance The Concept of Covariance

Covariance
The Concept

What is covariance?
We convert each variable into deviation score form by subtracting the respective means.
If scores tend to be on the same sides of their respective means, then

1 Positive deviations will tend to be matched with positive deviations, and
2 Negative deviations will tend to be matched with negative deviations

To capture this trend, we sum the cross-product of the deviation scores, then divide by
n − 1.
So, essentially, the sample covariance between X and Y is an estimate of the average
cross-product of deviation scores in the population.
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Covariance Computing Covariance

Covariance
Computations

The sample covariance of X and Y is defined as

sx ,y =
1

n − 1

n∑
i=1

(Xi − X •)(Yi − Y •) (1)

An alternate, more computationally convenient formula, is

sx ,y =
1

n − 1

(
n∑

i=1

XiYi −
∑n

i=1 Xi
∑n

i=1 Yi

n

)
(2)

An important fact is that the variance of a variable is its covariance with itself, that is, if
we substitute x for y in Equation 1, we obtain

s2
x = sx ,x =

1

n − 1

n∑
i=1

(Xi − X •)(Xi − X •) (3)
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Covariance Computing Covariance

Covariance
Computations

Computing the covariance between two variables “by hand” is tedious though
straightforward and, not surprisingly (because the variance of a variable is a covariance),
follows much the same path as computation of a variance:

1 If the data are very simple, and especially if n is small and the sample mean a simple
number, one can convert X and Y scores to deviation score form and use Equation 1.

2 More generally, one can compute
∑

X ,
∑

Y ,
∑

XY , and n and use Equation 2.
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Covariance Computing Covariance

Covariance
Computations

Example (Computing Covariance)

Suppose you were interested in examining the relationship between cigarette smoking and lung
capacity. You asked 5 people how many cigarettes they smoke in an average day, and you then
measure their lung capacities, which are corrected for age, height, weight, and gender. Here
are the data:

Cigarettes Lung.Capacity

1 0 45

2 5 42

3 10 33

4 15 31

5 20 29

(. . . Continued on the next slide)
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Covariance Computing Covariance

Covariance
Computations

Example (Computing Covariance)

In this case, it is easy to compute the mean for both Cigarettes (X) and Lung Capacity (Y),
i.e., X • = 10, Y • = 36, then convert to deviation scores and use Equation 1 as shown below:

X dX dXdY dY Y XY

1 0 -10 -90 9 45 0

2 5 -5 -30 6 42 210

3 10 0 0 -3 33 330

4 15 5 -25 -5 31 465

5 20 10 -70 -7 29 580

The sum of the dXdY column is −225, and we then compute the covariance as

sx ,y =
1

n − 1

n∑
i=1

dXidYi =
−215

4
= −53.75

(. . . Continued on the next slide)
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Covariance Computing Covariance

Covariance
Computations

Example (Computing Covariance)

Alternatively, one might compute
∑

X = 50,
∑

Y = 180,
∑

XY = 1585, and n, and use
Equation 2.

sx ,y =
1

n − 1

(∑
XY −

∑
X
∑

Y

n

)
=

1

5− 1

(∑
1585− 50× 180

5

)
=

1

4

(∑
1585− 9000

5

)
=

1

4

(∑
1585− 1800

)
=

1

4
(−215)

= −53.75

Of course, there is a much easier way, using R. (. . . Continued on the next slide)
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Covariance Computing Covariance

Covariance
Computations

Example (Computing Covariance)

Here is how to compute covariance using R’s cov command. In the case of really simple
textbook examples, you can copy the numbers right off the screen and enter them into R,
using the following approach.

> Cigarettes <- c(0,5,10,15,20)

> Lung.Capacity <- c(45,42,33,31,29)

> cov(Cigarettes,Lung.Capacity)

[1] -53.75
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Covariance Limitations of Covariance

Covariance
Limitations

Covariance is an extremely important concept in advanced statistics.
However, in its ability to convey information about the nature of a relationship between
two variables, covariance is not particularly useful as a single descriptive statistic, and is
not discussed much in elementary textbooks.
What is the problem with covariance?
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Covariance Limitations of Covariance

Covariance
Limitations

We saw that the covariance between smoking and lung capacity in our tiny sample is
−53.75.
The problem is, this statistic is not invariant under a change of scale.
As a measure on deviation scores, we know that adding or subtracting a constant from
every X or every Y will not change the covariance between X and Y .
However, multiplying every X or Y by a constant will multiply the covariance by that
constant.
It is easy to see that from the covariance formula, because if you multiply every raw score
by a constant, you multiply the corresponding deviation score by that same constant.
We can also verify that in R. Suppose we change the smoking measure to packs per day
instead of cigarettes per day by dividing X by 20. This will divide the covariance by 20.
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Covariance Limitations of Covariance

Covariance
Limitations

Here is the R calculation:

> cov(Cigarettes, Lung.Capacity)

[1] -53.75

> cov(Cigarettes, Lung.Capacity) / 20

[1] -2.6875

> cov(Cigarettes/20,Lung.Capacity)

[1] -2.6875

The problem, in a nutshell, is that the sign of a covariance tells you whether the
relationship is positive or negative, but the absolute value is, in a sense, “polluted by the
metric of the numbers.”
Depending on the scale of the data, the absolute value of the covariance can be very large
or very small.
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Covariance Limitations of Covariance

Covariance
Limitations

How can we fix this?
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The (Pearson) Correlation Coefficient Definition

The (Pearson) Correlation Coefficient
Definition

To take the metric out of covariance, we compute it on the Z -scores instead of the
deviation scores. (Remember that Z -scores are also deviation scores, but they have the
standard deviation divided out.)
The sample correlation coefficient rx ,y , sometimes called the Pearson correlation, but
generally referred to as “the correlation” is simply the sum of cross-products of Z -scores
divided by n − 1:

rx ,y =
1

n − 1

n∑
i=1

ZxiZyi (4)

The population correlation ρx ,y is the average cross-product of Z -scores for the two
variables.
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The (Pearson) Correlation Coefficient Definition

The (Pearson) Correlation Coefficient
Definition

One may also define the correlation in terms of the covariance, i.e.,

rx ,y =
sx ,y
sxsy

(5)

Equation 5 shows us that we may think of a correlation coefficient as a covariance with
the standard deviations factored out.
Alternatively, since we may turn the equation around and write

sx ,y = rx ,y sxsy (6)

we may think of a covariance as a correlation with the standard deviations put back in.
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The (Pearson) Correlation Coefficient Computing

The (Pearson) Correlation Coefficient
Computing the Correlation

Most textbooks give computational formulas for the correlation coefficient. This is
probably the most common version.

rx ,y =
n
∑

XY −
∑

X
∑

Y√[
n
∑

X 2 − (
∑

X )2
] [

n
∑

Y 2 − (
∑

Y )2
] (7)

If we compute the quantities n,
∑

X ,
∑

Y ,
∑

X 2,
∑

Y 2,
∑

XY , and substitute them
into Equation 7, we can calculate the correlation as shown on the next slide.
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The (Pearson) Correlation Coefficient Computing

The (Pearson) Correlation Coefficient
Computing the Correlation

Example (Computing a Correlation)

rxy =
(5)(1585)− (50)(180)√[

(5)(750)− 502
] [

(5)(6680)− 1802
]

=
7925− 9000√

(3750− 2500)(33400− 32400)

=
−1075√

(1250) (1000)

= −.9615

(Continued on the next slide . . . )
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The (Pearson) Correlation Coefficient Computing

The (Pearson) Correlation Coefficient
Computing the Correlation

Example (Computing a Correlation)

In general, you should never compute a correlation by hand if you can possibly avoid it. If n is
more than a very small number, your chances of successfully computing the correlation would
not be that high. Better to use R.
Computing a correlation with R is very simple. If the data are in two variables, you just type

> cor(Cigarettes,Lung.Capacity)

[1] -0.9615092

By the way, the correlation between height and shoe size in our example data set is

> cor(Size,Height)

[1] 0.7677094
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Population Variance, Covariance and Correlation

Population Variance, Covariance and Correlation
Introduction

Each of the sample quantities, variance, covariance, and correlation has a corresponding
population quantity that is usually described in terms of expected value theory.
In this section we will review some important aspects of the algebra of expected values.
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Population Variance, Covariance and Correlation

Population Variance, Covariance and Correlation
Expected Value Algebra

Recall that the expected value of a random variable X , denoted E (X ), is the long run
average of values taken on by the random variable.
In general, functions of random variables are themselves random variables. For example, if
X is a random variable, X 2 is a random variables, as is 2X + 4.

James H. Steiger (Vanderbilt University) Review of Basic Statistical Concepts 58 / 72



Population Variance, Covariance and Correlation

Population Variance, Covariance and Correlation
Expected Value Algebra

For random variables X and Y , and constants a and b, we have the following results.

E (a) = a (8)

E (aX + b) = aE (X ) + b (9)

E (X + Y ) = E (X ) + E (Y ) (10)
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Population Variance, Covariance and Correlation

Population Variance, Covariance and Correlation
Population Variance

Definition (Population Variance and Standard Deviation)

The variance of a random variable X is defined as the long run average squared deviation
score, i.e.,

Var(X ) = σ2
X = E ((X − E (X ))2) (11)

The standard deviation σX of a random variable X is the square root of the variance of X .

The variance of a random variable may also be computed with the important formula

Var(X ) = E (X 2)− (E (X ))2 (12)
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Population Variance, Covariance and Correlation

Population Variance, Covariance and Correlation
Population Covariance

Definition (Population Covariance)

The covariance of the random variables X and Y is defined as the long run average
cross-product of deviation scores, i.e.,

Cov(X ,Y ) = σX ,Y = E ((X − E (X ))(Y − E (Y ))) (13)

The covariance of X and Y may also be computed as

Cov(X ,Y ) = E (XY )− E (X )E (Y ) (14)
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Population Variance, Covariance and Correlation

Population Variance, Covariance and Correlation
Z -Score Random Variables

Definition (Z -score Random Variable)

A random variable is said to be in deviation score form if it has a mean of zero. It is said to be
in Z -score form if it has a mean of zero and a standard deviation of 1. Any random variable X
with positive variance may be converted to Z score form with the formula

ZX =
X − E (X )

σX
=

X − µX
σX
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Population Variance, Covariance and Correlation

Population Variance, Covariance and Correlation
Population Correlation

Definition (Population Correlation)

The correlation of random variables X and Y is defined as the long run average cross-product
of Z scores, i.e.,

ρX ,Y = E (ZYZY ) (15)

The correlation of X and Y may also be computed as

ρX ,Y =
σX ,Y

σXσY
(16)
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Laws of Linear Combination

Laws of Linear Combination
Definition (Linear Combination)

A linear combination of two random variables X and Y is any expression of the form aX + bY
where a and b are constants called linear weights.
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Laws of Linear Combination

Laws of Linear Combination
Mean of a Linear Combination

Theorem (Mean of a Linear Combination)

If random variables X and Y have means E (X ) and E (Y ), respectively, then the linear
combination aX + bY has mean E (aX + bY ) = aE (X ) + bE (Y ).

A similar result holds for linear combinations with sample data. That is, if X and Y represent
lists of numbers, and Wi = aXi + bYi , then W • = aX • + bY •.
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Laws of Linear Combination

Laws of Linear Combination
Variance of a Linear Combination

Theorem (Variance of a Linear Combination)

For random variables W ,X ,and Y , if W = aX + bY , then

σ2
W = a2σ2

X + b2σ2
Y + 2abσX ,Y

In a similar vein, for lists of numbers X and Y , if Wi = aXi + bYi , then

S2
W = a2S2

X + b2S2
Y + 2abSX ,Y
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Laws of Linear Combination

Laws of Linear Combination
The General Heuristic Rule

Theorem (The General Heuristic Rule)

A general rule that allows computation of the variance of any linear combination or
transformation, as well as the covariance between any two linear transformations or
combinations, is the following:

For the variance of a single expression, write the expression, square it, and apply the
simple mnemonic conversion rule described below.
For the covariance of any two expressions, write the two expressions, compute their
algebraic product, then apply the conversion rule described below.

The conversion rule is as follows:

All constants are carried forward.
If a term has the product of two variables, replace the product with the covariance of the
two variables.
If a term has the square of a single variable, replace the squared variable with its variance.
Any term without the product of two variables or the square of a variable is deleted.
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Laws of Linear Combination

Laws of Linear Combination
The General Heuristic Rule

Example (The General Heuristic Rule)

Suppose X and Y are random variables, and you compute the following new random variables:

W = X − Y
M = 2X + 5

Construct formulas for

1 σ2
W

2 σ2
M

3 σW ,M

(Answers on next slide . . . )
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Laws of Linear Combination

Laws of Linear Combination
The General Heuristic Rule

Example (The General Heuristic Rule)

Answers.

1 To get σ2
W , we square X − Y , obtaining X 2 + Y 2 − 2XY , and apply the conversion rule

to get σ2
W = σ2

X + σ2
Y − 2σX ,Y .

2 To get σ2
M , we square 2X + 5, obtaining 4X 2 + 20X + 25. Applying the conversion rule,

we drop the last two terms, neither of which have the square of a variable or the product
of two variables. We are left with the first term, which yields σ2

M = 4σ2
X .

3 To get σW ,M , we begin by computing (X − Y )(2X + 5) = 2X 2 − 2XY + 5X − 5Y . We
drop the last two terms, and obtain σW ,M = 2σ2

X − 2σX ,Y .
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Significance Test for the Correlation Coefficient

Significance Test for r

To test whether Pearson correlation r is significantly different from zero, use the following
t statistic, which has n − 2 degrees of freedom. Of course, the statistical null hypothesis
is that the population correlation ρ = 0.

tn−2 =
√
n − 2

r√
1− r2

(17)
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Significance Test for the Correlation Coefficient

Significance Test for r

Example (Significance Test for r)

Suppose you observe a correlation coefficient of 0.2371 with a sample of n = 93. Can you
reject the null hypothesis that ρ = 0? Use α = 0.05.
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Significance Test for the Correlation Coefficient

Significance Test for r

Example

Answer. We compute the t statistic with R.

> df <- 93 - 2

> t <- sqrt(df)*0.2371 / sqrt(1-0.2371^2)

> t

[1] 2.328177

> df

[1] 91

> t.crit <- qt(0.975,df) ## this command gets the 0.975 quantile of t

> t.crit

[1] 1.986377

Since the observed t exceeds the critical value, we can reject the null hypothesis and declare
the correlation statistically significant at the 0.05 level, two-tailed.
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